publications

publications by categories in reversed chronological order. generated by jekyll-scholar.

2025

  1. vision_inv_sampling_main.jpg
    Amortizing intractable inference in diffusion models for Bayesian inverse problems
    Siddarth Venkatraman, Moksh Jain, Luca Scimeca, and 8 more authors
    In Proc. Workshop on Machine Learning and the Physical Sciences. Accessed, 2025
  2. figure1b.png
    From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
    Julius Berner, Lorenz Richter, Marcin Sendera, and 2 more authors
    arXiv preprint arXiv:2501.06148, 2025
  3. proteins_posterior_outsourced_1.png
    Outsourced diffusion sampling: Efficient posterior inference in latent spaces of generative models
    Siddarth Venkatraman, Mohsin Hasan, Minsu Kim, and 5 more authors
    International Conference on Machine Learning (ICML), 2025
  4. SEMU_fig1.jpg
    SEMU: Singular Value Decomposition for Efficient Machine Unlearning
    Marcin Sendera, Łukasz Struski, Kamil Książek, and 3 more authors
    International Conference on Machine Learning (ICML), 2025
  5. posterior.png
    Solving Bayesian inverse problems with diffusion priors and off-policy RL
    Luca Scimeca, Siddarth Venkatraman, Moksh Jain, and 8 more authors
    In ICLR 2025 Workshop on Deep Generative Model in Machine Learning: Theory, Principle and Efficacy, 2025
  6. unlearning_method.jpg
    Embarrassingly Efficient Unlearning with SVD
    Marcin Sendera, Łukasz Struski, Kamil Książek, and 3 more authors
    In ICML 2025 Workshop on Machine Unlearning for Generative AI, 2025
  7. uai2025.png
    Revisiting the Equivalence of Bayesian Neural Networks and Gaussian Processes: On the Importance of Learning Activations
    Marcin Sendera, Amin Sorkhei, and Tomasz Kuśmierczyk
    In The 41st Conference on Uncertainty in Artificial Intelligence (UAI), 2025

2024

  1. dem2_cut.png
    Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
    Tara Akhound-Sadegh, Jarrid Rector-Brooks, Avishek Joey Bose, and 9 more authors
    International Conference on Machine Learning (ICML), 2024
  2. rtb.png
    Amortizing intractable inference in diffusion models for vision, language, and control
    Siddarth Venkatraman, Moksh Jain, Luca Scimeca, and 8 more authors
    Advances in Neural Information Processing Systems (NeurIPS), 2024
  3. early_detection.jpg
    Early detection and diagnosis of cancer with interpretable machine learning to uncover cancer-specific DNA methylation patterns
    Izzy Newsham, Marcin Sendera, Sri Ganesh Jammula, and 1 more author
    Biology Methods and Protocols, 2024
  4. autolora.png
    Autolora: Autoguidance meets low-rank adaptation for diffusion models
    Artur Kasymov, Marcin Sendera, Michał Stypułkowski, and 2 more authors
    arXiv preprint arXiv:2410.03941, 2024
  5. manywell.png
    Improved off-policy training of diffusion samplers
    Marcin Sendera, Minsu Kim, Sarthak Mittal, and 6 more authors
    Advances in Neural Information Processing Systems (NeurIPS), 2024
  6. uai2025.png
    Hi-fi functional priors by learning activations
    Marcin Sendera, Amin Sorkhei, and Tomasz Kuśmierczyk
    In NeurIPS 2024 Workshop on Bayesian Decision-making and Uncertainty, 2024

2023

  1. hypershot.png
    Hypershot: Few-shot learning by kernel hypernetworks
    Marcin Sendera, Marcin Przewięźlikowski, Konrad Karanowski, and 3 more authors
    In Proceedings of the IEEE/CVF winter conference on applications of computer vision, 2023
  2. bayesian_hypershot.png
    The general framework for few-shot learning by kernel HyperNetworks
    Marcin Sendera, Marcin Przewiȩźlikowski, Jan Miksa, and 5 more authors
    Machine Vision and Applications, 2023

2021

  1. oneflow.png
    OneFlow: One-class flow for anomaly detection based on a minimal volume region
    Łukasz Maziarka, Marek Śmieja, Marcin Sendera, and 3 more authors
    IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021
  2. flowsvdd.png
    Flow-based SVDD for anomaly detection
    Marcin Sendera, Marek Śmieja, Łukasz Maziarka, and 3 more authors
    In ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models, 2021
  3. missing_glow.png
    Missing Glow Phenomenon: Learning Disentangled Representation of Missing Data
    Marcin Sendera, Łukasz Struski, and Przemysław Spurek
    In International Conference on Neural Information Processing, 2021
  4. nggp.png
    Non-gaussian gaussian processes for few-shot regression
    Marcin Sendera, Jacek Tabor, Aleksandra Nowak, and 5 more authors
    Advances in Neural Information Processing Systems (NeurIPS), 2021

2020

  1. Supermodeling: the next level of abstraction in the use of data assimilation
    Marcin Sendera, Gregory S Duane, and Witold Dzwinel
    In International Conference on Computational Science, 2020

2019

  1. Data adaptation in handy economy-ideology model
    Marcin Sendera
    arXiv preprint arXiv:1904.04309, 2019

2018

  1. Hybrid swarm and agent-based evolutionary optimization
    Leszek Placzkiewicz, Marcin Sendera, Adam Szlachta, and 4 more authors
    In International Conference on Computational Science, 2018